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Delay equations from population dynamics

Renewal equation for population birth rate

b(t) =

∫ amax

arepr

fertility︷︸︸︷
β(a)

ind of age a︷ ︸︸ ︷
F(a) b(t − a) da

often coupled with a delay-di�erential equation for the environmental variable
(substrate, prey,. . . )

dS

dt
(t) = f (S(t))︸ ︷︷ ︸

consumer-free

−
∫ amax

0

consumption︷︸︸︷
γ(a)

ind of age a︷ ︸︸ ︷
F(a) b(t − a) da

Francesca Scarabel (York U, Toronto) Numerical bifurcation analysis of renewal equations 1 / 32



Bifurcation analyses

• interest in dynamics and bifurcations (rather than time integration)

• often impossible analytical results

• bifurcation software covers ODE and DDE with discrete delays, no
distributed delay or integral equations
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The goal

Nonlinear
delay equation

 

↑
ODE approximation
and software for ODE

(matcont)

 bifurcation
analyses

Breda, Diekmann, Gyllenberg, S., Vermiglio, SIAM J. Appl. Dyn. Syst., 2016

Francesca Scarabel (York U, Toronto) Numerical bifurcation analysis of renewal equations 3 / 32



• Why? structured models

• What? delay equations

• How? pseudospectral discretization

• A new approach for renewal equations
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Delay equation: a rule for extending a function given its past
Let τ > 0 be the maximal delay. Given a function x , the history function is

xt : [−τ, 0]→ R
xt(θ) = x(t + θ), θ ∈ [−τ, 0]

−τ 0 t1 − τ t1 t2 − τ t2

ϕ

xt2

xt1

time

x(t)

renewal (RE): x(t) = F (xt) F : X → R
X = L1([−τ, 0],R)

di�erential (DDE): ẏ(t) = G (yt) G : Y → R
Y = C ([−τ, 0],R)

coupled systems:

{
x(t) = F (xt , yt)

ẏ(t) = G (xt , yt)
F ,G : X × Y → R

Scalar equations for simplicity, τ <∞ real assumption
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The abstract equation

Once provided with an initial condition ψ on [−τ, 0] and under standard
(Lipschitz) assumptions on the rhs, the corresponding initial value problem is
equivalent to an Abstract Cauchy Problem for the history function v(t) ∈ Y
(space of functions) {

v̇(t) = A(v(t)) t ≥ 0

v(0) = ψ

where A is the in�nitesimal generator of the family of solution operators

A(ψ) = ψ′, ψ ∈ D(A)
D(A) = {ψ ∈ Y s.t. ψ′ ∈ Y and a �rule for extension�}

Rule for extension:

• for DDE: ψ′(0) = G (ψ), with Y = C ([−τ, 0]
• for RE: ψ(0) = F (ψ), with Y = L1([−τ, 0])
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Discretization

−τ = θM θj θ0 = 0

ψ

pM

Mesh of M + 1 nodes in [−τ, 0]
−τ = θM < · · · < θ0 = 0

function in Y ≈ polynomial of degree M

ψ(θ) ≈ pM(θ) =
M∑
j=0

`j(θ)vj

with vj values on the nodes, j = 0, . . . ,M

and `j(θ) Lagrange polynomials:

`j(θ) =
∏
k 6=j

θ − θk
θj − θk
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Collocation

Do to pM as you would do to ψ (only on θ0, . . . , θM)

→ for DE, we need to describe the abstract equation v̇(t) = A(v(t))

−τ = θM θj θ1 θ0 = 0

v0(t)

v1(t)vj(t)

vM(t)

ciao

�translation�: Aψ = ψ′︷ ︸︸ ︷
questotestoe′lungoabbastanza?nope

�rule for extension�

↓
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Approximating translation

Recall v(t)(θ) ≈ pM(t, θ) =
∑M

j=0 vj(t)`j(θ).

On θ1, . . . , θM , we approximate the translation v̇(t) = Av(t) by imposing

∂

∂t
pM(t, θk) =

∂

∂θ
pM(t, θk), k = 1, . . .M.

By linearity, we have:

∂pM
∂t

(t, θk) =
[ ∂
∂t

M∑
j=0

vj(t)`j(θ)
]
θ=θk

=
M∑
j=0

v̇j(t)`j(θk) = v̇k(t),

∂pM
∂θ

(t, θk) =
[ ∂
∂θ

M∑
j=0

vj(t)`j(θ)
]
θ=θk

=
M∑
j=0

vj(t)`
′
j(θk) =

M∑
j=0

vj(t)dkj
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Approximating translation

Hence we get the M equations

v̇k(t) =
M∑
j=0

vj(t)dkj , k = 1, . . . ,M

where the coe�cients dkj := `′j(θk) are

• completely determined by the nodes

• independent of the speci�c delay equation

To get a closed system, we need to specify an equation for v0(t)
→ we do this by imposing the rule for extension (that characterizes the
domain of A)
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Approximating the rule for extension

• for DDE, the rule for extension is di�erential (ψ′(0) = G (ψ)), and
collocation gives:

v̇0(t) = G (pM(t, ·))
→ approximating system of M + 1 ODE

• for RE, the rule for extension is not di�erentiated (ψ(0) = F (ψ)), and
collocation gives:

v0(t) = F (pM(t, ·))
→ approximating system of M ODE, plus algebraic condition for v0

In any case, the speci�c right-hand side of the delay equation appears only in
the equation for v0, applied to the interpolating polynomial.
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Renewal Equations: the approximating ODE system
Approach in Breda et al, SIADS, 2016

v0(t) = F (pM)

• We can solve the equation for v0 using a numerical solver for nonlinear
equations:

v0(t) = h(v1(t), . . . , vM(t))

Plugging into the equations for v̇1(t), . . . , v̇M(t), we get a system of M
ODE.

• If F is linear (often in models for structured populations, where the
unknown describes the population birth rate), we can invert explicitly:

v0(t) = (I − F `0)
M∑
j=1

vj(t)F `j
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Theoretical convergence for equilibria

• one-to-one correspondence of equilibria

• τ <∞ and Chebyshev extremal nodes: characteristic roots converging
with spectral accuracy, i.e., O(M−k) for all k

1 10 50
10−11

10−6

10−1

Breda, Maset, Vermiglio, SIAM J. Sci. Comput., 2005
Breda, Getto, Sánchez Sanz, Vermiglio, SIAM J. Sci. Comput., 2015

Breda, Diekmann, Gyllenberg, S., Vermiglio, SIAM J. Appl. Dyn. Syst., 2016
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It works! Example: a cannibalism equation

b(t) =
γ

2

∫ τ

1

b(t − s) e−b(t−s) ds, t ≥ 0,

Bifurcation analysis and periodic orbits obtained with Matcont, τ = 3, M = 20
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Limitations

• the nonlinear algebraic equation must be solved at every evaluation of the
right-hand side of the ODE system: despite available e�cient methods,
computationally expensive

• the natural state space of RE is L1, where point-evaluation is not well
de�ned. In practice, solutions are continuous for t > τ , but
approximating L1 functions with polynomials seems unnatural
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A new approach using the integrated state
In preparation with Rossana Vermiglio (Udine) and Odo Diekmann (Utrecht)

Main idea

Approximate the integrated state (element of AC ) rather than the original
state (in L1), via the mapping

L1([−τ, 0])→ AC ([−τ, 0])

ϕ 7→ −
∫ 0

·
ϕ(s)ds

where AC is interpreted as a subspace of NBV ,

NBV := {ψ ∈ BV : ψ(0) = 0, ψ continuous from the right on (−τ, 0]}
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A dynamical system for the integrated state

Given a renewal equation b(t) = F (bt), t > 0, consider

B(t) :=

∫ t

0

b(s) ds

and de�ne the state

v(t)(θ) := B(t + θ)− B(t), θ ∈ [−τ, 0].

Note that v(t)(0) = 0 and ∂
∂θ v(t) = bt . For θ ∈ [−τ, 0), we have

(
d

dt
v(t)

)
(θ) =

∂

∂t
B(t + θ)− ∂

∂t
B(t)

=
∂

∂θ
B(t + θ)− b(t)

=
∂

∂θ
v(t)(θ)− F

(
∂

∂θ
v(t)

)
, θ ∈ [−τ, 0)
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The abstract equation
We can represent the dynamical system as abstract equation in NBV :

d

dt
v(t) = Av(t)− F (Av(t)),

where A is the operator

Aψ = ψ′, ψ ∈ D(A)
D(A) = {ψ ∈ NBV : ψ′ ∈ NBV }.

Note that D(A) ⊂ X ⊂ NBV with

X := {ϕ ∈ AC ([−τ, 0]) : ϕ(0) = 0}

A is the generator of the semigroup of solution operators, which is not strongly
continuous in NBV , but it is in X

The perturbation theory in NBV is developed in

Diekmann, Verduyn Lunel, Twin semigroups and delay equations, submitted
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Collocation

We approximate v(t) with a polynomial pM such that pM(0) = 0, hence

pM(t, θ) =
M∑
j=1

vj(t)`j(θ)

We want to approximate

v̇(t) =
∂

∂θ
v(t)− F

(
∂

∂θ
v(t)

)

Using collocation on θ1, . . . , θM , we have

v̇k(t) =
M∑
j=1

dkjvj(t)− F (
M∑
j=1

vj(t)`
′
j), k = 1, . . . ,M
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The approximating ODE system

v̇k(t) =
M∑
j=1

dkjvj(t)− F (
M∑
j=1

vj(t)`
′
j)

• system of M ODE

• no need to solve a nonlinear equation, but only evaluate the function F

• the solution of the RE can be recovered by

b(t) ≈ F (
M∑
j=1

vj(t)`
′
j)

Francesca Scarabel (York U, Toronto) Numerical bifurcation analysis of renewal equations 19 / 32



Example: the cannibalism equation

b(t) =
γ

2

∫ τ

1

b(t − s) e−b(t−s)
ds, t ≥ 0,

Performed with Matcont, M = 20, τ = 3.
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Improved computation times allowed us to study the two-parameter plane.
However, computations are numerically unstable sometimes.
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Comparison of computation times

Computation time (seconds) for a 100-point continuation of the branch of
positive equilibria and periodic solutions.

Equilibrium Periodic solutions

M [SIADS] [in progress] Ratio M [SIADS] [in progress] Ratio

15 15.65 1.27 12.32 15 2704 198 13.66
16 16.60 1.40 11.86 16 2889 259 11.15
17 17.62 1.52 11.59 17 3066 298 10.29
18 18.75 1.66 11.30 18 3265 301 10.85
19 19.79 1.77 11.18 19 3437 302 11.38
20 21.07 1.91 11.03 20 3659 344 10.64
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An SIRS equation

b(t) = γ

(
1−

∫ 1

0

b(t − s)ds

)∫ 1

0

k(s)b(t − s)ds

where k is a Gamma-type kernel.
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Bifurcation diagram w.r.t. log γ with Hopf bifurcation
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(truncated) Nicholson's blow�ies equation

b(t) = β0 e
−

∫ τ
1

b(t−s) e−µs
ds

∫ τ

1

b(t − s) e−µs
ds
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Can we really trust the dynamical behavior
of the ODE system?
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Errors varying M

Errors in approximated Hopf and period doubling bifurcation points
(cannibalism equation)

1 5 10 20
10−8

10−5

10−2

101

M

Hopf (absolute error)

1 5 10 20
10−3

10−2

10−1

100

M

Period doubling (absolute error)

Methods: inversion algebraic condition (SIADS 2016, ◦) and integrated state
(in progress, •).
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One-to-one correspondence of equilibria

• If b is an equilibrium of
b(t) = F (bt),

then x ∈ RM with

x j = b θj , j = 1, . . . ,M, (1)

is an equilibrium of the approximating ODE system.

• Vice versa, every equilibrium x of the ODE system is such that b = x j/θj
does not depend on j and satis�es b = F (b).

• Discretization and linearization around an equilibrium commute

To study approximation of stability, we focus on linear(ized) equations
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Linear equations
Consider a linear equation

b(t) =

∫ τ

0

k(a)b(t − a) da (LRE)

where k is a bounded measurable function on [0,∞) with support in [0, τ ].

To write the approximating system in compact form, introduce the matrix
DM ∈ RM×M and the row vector KM ,

(DM)kj = dkj

(KM)j =

∫ τ

0

k(a)`′j(−a) da, j = 1, . . . ,M

Then, for V (t) = (v1(t), . . . , vM(t))T ∈ RM , we can write

v̇k(t) =
M∑
j=1

dkjvj(t)︸ ︷︷ ︸
(DMV )k

−F (
M∑
j=1

vj(t)`
′
j)︸ ︷︷ ︸

KMV

V̇ = DMV − (KMV ) 1 (LODE)
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Characteristic equations

The stability of the zero solution of (LRE) is determined by the real part of the
roots of the characteristic equation

0 = 1−
∫ τ

0

k(a) e−λa da =: χ(λ)

We can similarly de�ne the characteristic equation of (LODE)

0 = 1− KM(DM − λI )−11 =: χM(λ)

For λ ∈ C, we have χM(λ)→ χ(λ)
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Convergence of characteristic roots

For each characteristic root λ with multiplicity ν contained in a ball B, there
exists M(B) such that, for M ≥ M(B), there exist ν characteristic roots
λ1, . . . , λν of the discrete characteristic equation with

max
j=1,...,ν

|λ− λj | → 0 as M →∞,

and the convergence is spectral: O(M−k) for any k ∈ N.
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A �bonus�: convergence of resolvent operators

Consider
ψ = (λI −A)−1ϕ

and the corresponding discrete operators

pM = PM(λI − DM)−1RMϕ,

where RM and PM denotes restriction on θ1, . . . , θM and interpolation (with 0
in 0), respectively

• ‖pM − ψ‖NBV is bounded by the uniform interpolation error of ψ′

• convergence to zero if ψ′ ∈ NBV (e.g., ϕ ∈ D(A))
• the order of convergence depends on the regularity of ψ′: the smoother

the function, the higher the order of convergence

• although resolvent operators are not necessary for the convergence of
stability, they are useful for studying solution operators
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Final remarks

Speci�c to the new approach for RE:

• improved computation times compared to the approximation in L1

• elegant approximation in the space AC , where point evaluation is well
de�ned and interpolation converges on Chebyshev points

• proof techniques and convergence results similar to the original method in
L1 (SIADS)

More general about pseudospectral approximation:

• �exible and general (DDE, RE, ∞-delay, SD delay)

• easy to implement

• low dimensional

• exploits pre-existing software for ODE (hence possible to analyze periodic
solutions and their bifurcations)

• no need to linearize
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Open problems

• preliminary numerical tests show that periodic orbits are problematic in
terms of approximating multipliers and hence bifurcations as M increases

• large computation times beyond equilibria (periodic solutions and
bifurcations)

• preservation of the dimension of the unstable manifold for large M

• convergence of solution operators ongoing: exploits representation as
Laplace transform of the resolvent operator

• convergence of bifurcations: for DDE, Hopf bifurcation and its direction
approximated with spectral accuracy (de Wol�, S., Verduyn-Lunel, Diekmann,

submitted)

• Krylov's convergence result for ϕ ∈ AC ,

‖(I − LM)ϕ‖∞ → 0 if M →∞,

is proved for Chebyshev zeros. We would like to extend the result to
Chebyshev extrema
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Thanks for your attention!
scarabel@yorku.ca
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