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I am a PhD student at Heidelberg University, working in the
Symplectic Geometry group. All that I will present today is joint work
with Peter Albers.

Today want to discuss a result about delay equations which we found
using methods from symplectic topology.

We do not have a strong background on DDEs, but view delay
equations and dynamical systems from a geometric viewpoint.

I hope we can find a common language to discuss the connections
between polyfolds and DDEs!

If you have any questions during the talk, do not hesitate to ask!
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Plan for this talk:

1 Idea of Polyfold theory

2 Setting and main result

3 The geometric approach

4 Classical differentiability

5 Definitions and sc-smoothness

6 Applying the M-polyfold IFT
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Idea of Polyfold theory

Idea of Polyfold theory

Polyfold theory

was developed by H. Hofer, K. Wysocki and E. Zehnder

is used for the study of moduli spaces of J-holomorphic curves
(maps u : (Σ, i)→ (M, J) that satisfy the PDE u ◦ i = J ◦ u,
modulo reparametrization)

was made to overcome the following problems that frequently occur
in the study of moduli spaces:

varying domains
varying automorphism groups
transversality issues
non-smoothness of reparametrization maps

is described in full detail in the book “Polyfold and Fredholm theory”
by HWZ which is available on Arxiv.
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Idea of Polyfold theory

Main ingredients of polyfold theory:

sc-Banach spaces

sc-differentiability: a new (weaker) sense of differen-
tiability for maps between sc-Banach spaces

 sc-calculus

M-polyfolds: topological spaces that locally look like open subsets of
(sc-retracts in) these sc-Banach spaces, with sc-smooth transition
maps

polyfolds: M-polyfolds with some additional orbifold behaviour

Important results:

regularization scheme: “every intersection can be made transverse by
suitable small perturbation”

an implicit function theorem (IFT) for sc-smooth sc-Fredholm sections
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Setting and main result

Setting and main theorem

X : S1 × Rn −→ Rn smooth, time-dependent vector field on Rn

(1-periodic in time)
τ ∈ R parameter, called “delay”

We study 1-periodic solutions x : S1 −→ Rn of the following equation:

ẋ(t) = Xt

(
x(t − τ)

)
Note: We fix the period and want to vary the delay.
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Setting and main result

Idea: If there is a “nice” solution without delay, then there should be a
whole family of solutions for small delays.

But what do I mean by “nice”?

Definition

Let Φt
X : Rn → Rn denote the flow of X . A 1-periodic solution x of

ẋ(t) = Xt

(
x(t)

)
is non-degenerate if the linear map

dΦ1
X

(
x(0)

)
: Rn → Rn does not have 1 as an eigenvalue.
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Setting and main result

Theorem (Albers–S.)

Assume that x0 is a non-degenerate 1-periodic orbit of the vector field X .

Then for every small enough τ ∈ R there exists a (locally unique) solution
xτ ∈ C∞(S1,Rn) of the delay equation

ẋ(t) = Xt

(
x(t − τ)

)
.

The parametrization τ 7−→ xτ is smooth.

The result can be generalized to finitely many discrete delays, and also to
suitable delay equations on orientable manifolds.

In this talk: explain how to prove the theorem via the M-polyfold IFT
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The geometric approach

The geometric approach

Solutions are zeros of the map

s : R× C∞(S1,Rn) −→ C∞(S1,Rn)

(τ, x) 7−→ ẋ − X
(
x(· − τ)

)
.

We start with s(0, x0) = 0 and claim that the zero set near (0, x0) carries
the structure of a 1-dimensional smooth manifold (and is not contained in
{0} × C∞(S1,Rn)).

=⇒ want to use an implicit function theorem (IFT)
i.e. something like “the zero set of a smooth transverse Fredholm

section in a Banach bundle is a smooth manifold”

Problem: The shift map (τ, x) 7−→ x(· − τ) is not smooth.

=⇒ use sc-calculus and the M-polyfold IFT instead
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Classical differentiability

Classical differentiability

From now on denote Hm := Wm,2(S1,Rn).

For τ ∈ R and x ∈ H0 define

ϕ(τ, x) := x(· − τ) ∈ H0.

Note: If x ∈ Hm, then ϕ(τ, x) ∈ Hm with ‖ϕ(τ, x)‖Hm = ‖x‖Hm .
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Classical differentiability

Fact

The shift map

ϕ : R −→ L(H0,H0)

τ 7−→
(
x 7→ x(· − τ)

)
is not continuous when the target space carries the operator topology.

The shift map

ϕ : R× H1 −→ H0

is continuously differentiable with

dϕ(τ, x)(T , x̂) = ϕ(τ, x̂)− T · ϕ(τ, ẋ).

I. Seifert (Heidelberg University) Polyfold methods for Delay equations October 2020 11 / 21



Classical differentiability

We can write the map that cuts out our solution space as

s : R× H1 −→ H0

(τ, x) 7−→ ẋ − X
(
ϕ(τ, x)

)
.

Thus:

s is continuously differentiable.

It is not smooth on any fixed R× Hm.

This means:

We could use a C1-version of the IFT for Banach spaces and get a
C1-manifold of smooth solutions (xτ )τ .

This can only provide a C1-parametrization τ 7−→ xτ , not smooth.

If as domain we take R× H2, we gain another derivative of s, but we
loose the Fredholm property.

But: The setting of sc-calculus comes naturally and solves the problem!
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Definitions and sc-smoothness

Definitions and sc-smoothness

Definition (Hofer–Wysocki–Zehnder)

A sc-Banach space E is a Banach space E0 with a filtration by subspaces

E0 ⊇ E1 ⊇ E2 ⊇ . . .

such that

each Em is a Banach space on its own

each embedding Em+1 ↪→ Em is compact and dense.

Remark

If E0 is finite-dimensional, then E0 = E1 = E2 = . . . .

If E0 is infinite-dimensional, then E0 6= E1 6= E2 6= . . . .

I. Seifert (Heidelberg University) Polyfold methods for Delay equations October 2020 13 / 21



Definitions and sc-smoothness

By E1 denote the space E1 with the induced sc-structure:

E 1
m := Em+1

In our setting:

H =
(
Hm = Wm,2(S1,Rn)

)
m≥0

H1 =
(
H1
m = Wm+1,2(S1,Rn)

)
m≥0

R with constant sc-structure
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Definitions and sc-smoothness

Definition (HWZ)

A map f : E −→ F between sc-Banach spaces is sc0 or sc-continuous if

for all m ≥ 0 it is f (Em) ⊆ Fm, and

the induced map f |Em : Em −→ Fm is continuous.
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Definitions and sc-smoothness

Definition (HWZ)

A sc-continuous map f : E −→ F is sc1 or sc-differentiable if

for every x ∈ E1 there is a bounded linear operator df (x) : E0 −→ F0

such that

lim
‖h‖E1

→0

1

‖h‖E1

· ‖f (x + h)− f (x)− df (x)h‖F0 = 0

the tangent map

Tf : E1 ⊕ E −→ F1 ⊕ F

(x , h) 7−→
(
f (x), df (x)h

)
is sc-continuous.
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Definitions and sc-smoothness

Remark

derivative exists only at the 1-level, but it is a bounded linear operator
between 0-levels

derivative may not be continuous in operator norms, only after
evaluation on every level

in finite dimensions get back the usual notions of differentiability and
smoothness

Definition (HWZ)

Inductively, f is sck or k times sc-differentiable if it is sc-differentiable
and its tangent map is (k-1) times sc-differentiable.

It is sc∞ or sc-smooth if it is sck for all k ∈ N.

Theorem (HWZ)

The chain rule holds in sc-calculus.
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Definitions and sc-smoothness

Theorem (Frauenfelder–Weber)

The shift map

ϕ : R× H −→ H

(τ, x) 7−→ x(· − τ)

is sc-smooth.

Corollary (Albers–S.)

The map

s : R× H1 −→ H

(τ, x) 7−→ ẋ − X
(
ϕ(τ, x)

)
is sc-smooth.
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Applying the M-polyfold IFT

Applying the M-polyfold IFT

Recall:

Theorem (IFT for Banach bundles)

Assume that

we have a Banach space bundle over a Banach manifold,

f is a smooth section,

f has the Fredholm property and

f is transverse to the zero section.

Then the zero set of f is a smooth manifold of dimension equal to the
Fredholm index of f .
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Applying the M-polyfold IFT

Recall:

Theorem (IFT for M-polyfold bundles)

Assume that

we have a tame strong M-polyfold bundle admitting sc-smooth bump
functions,
our setting: the trivial sc-Hilbert space bundle

R× H1 × H −→ R× H1

f is a sc-smooth section,
our setting: s : R× H1 −→ H

f has the sc-Fredholm property and
our case: some work!

f is in good position
our case: need transversality

Then the zero set of f is a smooth manifold of dimension equal to the
Fredholm index of f .
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Applying the M-polyfold IFT

Indeed, we could prove the following:

Theorem (Albers–S.)

1 s : R× H1 −→ H is a sc-Fredholm section of index 1.

2 If x0 is a non-degenerate periodic orbit of X , then
ds(0, x0) : R× H1 −→ H is surjective.

This together with the M-polyfold IFT implies our main theorem:

Theorem (Albers–S.)

Assume that x0 is a non-degenerate 1-periodic orbit of the vector field X .

Then for every small enough τ ∈ R there exists a (locally unique) solution
xτ ∈ C∞(S1,Rn) of the delay equation

ẋ(t) = Xt

(
x(t − τ)

)
.

The parametrization τ 7−→ xτ is smooth.
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