Polyfold methods for Delay equations

Irene Seifert

joint work with Peter Albers

Heidelberg University

October 2020

- I am a PhD student at Heidelberg University, working in the Symplectic Geometry group. All that I will present today is joint work with Peter Albers.
- Today want to discuss a result about delay equations which we found using methods from symplectic topology.
- We do not have a strong background on DDEs, but view delay equations and dynamical systems from a geometric viewpoint.
- I hope we can find a common language to discuss the connections between polyfolds and DDEs!
- If you have any questions during the talk, do not hesitate to ask!

Plan for this talk:

- 2 Setting and main result
- 3 The geometric approach
- 4 Classical differentiability
- Definitions and sc-smoothness

6 Applying the M-polyfold IFT

Idea of Polyfold theory

Polyfold theory

- was developed by H. Hofer, K. Wysocki and E. Zehnder
- is used for the study of moduli spaces of J-holomorphic curves (maps $u : (\Sigma, i) \rightarrow (M, J)$ that satisfy the PDE $u \circ i = J \circ u$, modulo reparametrization)
- was made to overcome the following problems that frequently occur in the study of moduli spaces:
 - varying domains
 - varying automorphism groups
 - transversality issues
 - non-smoothness of reparametrization maps
- is described in full detail in the book "Polyfold and Fredholm theory" by HWZ which is available on Arxiv.

Main ingredients of polyfold theory:

- sc-Banach spaces
- sc-differentiability: a new (weaker) sense of differen sc-calculus tiability for maps between sc-Banach spaces
- M-polyfolds: topological spaces that locally look like open subsets of (sc-retracts in) these sc-Banach spaces, with sc-smooth transition maps
- polyfolds: M-polyfolds with some additional orbifold behaviour

Important results:

- regularization scheme: "every intersection can be made transverse by suitable small perturbation"
- an implicit function theorem (IFT) for sc-smooth sc-Fredholm sections

Setting and main theorem

- $$\begin{split} X: S^1 \times \mathbb{R}^n \longrightarrow \mathbb{R}^n \text{ smooth, time-dependent vector field on } \mathbb{R}^n \\ & (1\text{-periodic in time}) \\ \tau \in \mathbb{R} \text{ parameter, called "delay"} \end{split}$$
- We study 1-periodic solutions $x : S^1 \longrightarrow \mathbb{R}^n$ of the following equation:

$$\dot{x}(t) = X_t (x(t-\tau))$$

Note: We fix the period and want to vary the delay.

<u>Idea:</u> If there is a "nice" solution without delay, then there should be a whole family of solutions for small delays.

But what do I mean by "nice"?

Definition

Let $\Phi_X^t : \mathbb{R}^n \to \mathbb{R}^n$ denote the flow of X. A 1-periodic solution x of $\dot{x}(t) = X_t(x(t))$ is **non-degenerate** if the linear map $d\Phi_X^1(x(0)) : \mathbb{R}^n \to \mathbb{R}^n$ does not have 1 as an eigenvalue.

Theorem (Albers-S.)

Assume that x_0 is a non-degenerate 1-periodic orbit of the vector field X.

Then for every small enough $\tau \in \mathbb{R}$ there exists a (locally unique) solution $x_{\tau} \in C^{\infty}(S^1, \mathbb{R}^n)$ of the delay equation

$$\dot{x}(t) = X_t(x(t-\tau)).$$

The parametrization $\tau \mapsto x_{\tau}$ is smooth.

The result can be generalized to finitely many discrete delays, and also to suitable delay equations on orientable manifolds.

In this talk: explain how to prove the theorem via the M-polyfold IFT

The geometric approach

Solutions are zeros of the map

$$s: \mathbb{R} \times \mathcal{C}^{\infty}(S^1, \mathbb{R}^n) \longrightarrow \mathcal{C}^{\infty}(S^1, \mathbb{R}^n)$$
$$(\tau, x) \longmapsto \dot{x} - X(x(\cdot - \tau)).$$

We start with $s(0, x_0) = 0$ and claim that the zero set near $(0, x_0)$ carries the structure of a 1-dimensional smooth manifold (and is not contained in $\{0\} \times C^{\infty}(S^1, \mathbb{R}^n)$).

⇒ want to use an implicit function theorem (IFT) i.e. something like "the zero set of a smooth transverse Fredholm section in a Banach bundle is a smooth manifold"

Problem: The shift map $(\tau, x) \mapsto x(\cdot - \tau)$ is not smooth.

 \implies use sc-calculus and the M-polyfold IFT instead

Classical differentiability

From now on denote $H_m := W^{m,2}(S^1, \mathbb{R}^n)$.

For $\tau \in \mathbb{R}$ and $x \in H_0$ define

$$\varphi(\tau, x) := x(\cdot - \tau) \in H_0.$$

Note: If $x \in H_m$, then $\varphi(\tau, x) \in H_m$ with $\|\varphi(\tau, x)\|_{H_m} = \|x\|_{H_m}$.

Fact

• The shift map

$$\varphi: \mathbb{R} \longrightarrow \mathcal{L}(H_0, H_0)$$
$$\tau \longmapsto (x \mapsto x(\cdot - \tau))$$

is not continuous when the target space carries the operator topology.The shift map

$$\varphi: \mathbb{R} \times H_1 \longrightarrow H_0$$

is continuously differentiable with

$$\mathsf{d} arphi(au, x)(au, \hat{x}) = arphi(au, \hat{x}) - au \cdot arphi(au, \dot{x}).$$

We can write the map that cuts out our solution space as

$$\begin{aligned} s: \mathbb{R} \times H_1 \longrightarrow H_0 \\ (\tau, x) \longmapsto \dot{x} - X(\varphi(\tau, x)). \end{aligned}$$

Thus:

- *s* is continuously differentiable.
- It is not smooth on any fixed $\mathbb{R} \times H_m$.

This means:

- We could use a C^1 -version of the IFT for Banach spaces and get a C^1 -manifold of smooth solutions $(x_\tau)_{\tau}$.
- This can only provide a C^1 -parametrization $\tau \mapsto x_{\tau}$, not smooth.
- If as domain we take $\mathbb{R} \times H_2$, we gain another derivative of *s*, but we loose the Fredholm property.

But: The setting of sc-calculus comes naturally and solves the problem!

Definitions and sc-smoothness

Definition (Hofer–Wysocki–Zehnder)

A sc-Banach space E is a Banach space E_0 with a filtration by subspaces

 $E_0 \supseteq E_1 \supseteq E_2 \supseteq \ldots$

such that

- each E_m is a Banach space on its own
- each embedding $E_{m+1} \hookrightarrow E_m$ is compact and dense.

Remark

- If E_0 is finite-dimensional, then $E_0 = E_1 = E_2 = \dots$
- If E_0 is infinite-dimensional, then $E_0 \neq E_1 \neq E_2 \neq \ldots$.

By E^1 denote the space E_1 with the induced sc-structure:

$$E_m^1 := E_{m+1}$$

In our setting:

$$H = (H_m = W^{m,2}(S^1, \mathbb{R}^n))_{m \ge 0}$$
$$H^1 = (H_m^1 = W^{m+1,2}(S^1, \mathbb{R}^n))_{m \ge 0}$$
$$\mathbb{R} \text{ with constant sc-structure}$$

Definition (HWZ)

A map $f : E \longrightarrow F$ between sc-Banach spaces is sc⁰ or **sc-continuous** if

- for all $m \ge 0$ it is $f(E_m) \subseteq F_m$, and
- the induced map $f|_{E_m}: E_m \longrightarrow F_m$ is continuous.

Definition (HWZ)

A sc-continuous map $f : E \longrightarrow F$ is sc¹ or sc-differentiable if

• for every $x \in E_1$ there is a bounded linear operator $df(x) : E_0 \longrightarrow F_0$ such that

$$\lim_{\|h\|_{E_1}\to 0}\frac{1}{\|h\|_{E_1}}\cdot \|f(x+h)-f(x)-\mathsf{d}f(x)h\|_{F_0}=0$$

the tangent map

$$Tf: \mathsf{E}^1 \oplus \mathsf{E} \longrightarrow \mathsf{F}^1 \oplus \mathsf{F}$$
$$(x, h) \longmapsto (f(x), \mathsf{d}f(x)h)$$

is sc-continuous.

Remark

- derivative exists only at the 1-level, but it is a bounded linear operator between 0-levels
- derivative may not be continuous in operator norms, only after evaluation on every level
- in finite dimensions get back the usual notions of differentiability and smoothness

Definition (HWZ)

Inductively, f is sc^k or **k times sc-differentiable** if it is sc-differentiable and its tangent map is (k-1) times sc-differentiable.

It is sc^{∞} or **sc-smooth** if it is sc^k for all $k \in \mathbb{N}$.

Theorem (HWZ)

The chain rule holds in sc-calculus.

Theorem (Frauenfelder–Weber)

The shift map

$$arphi : \mathbb{R} imes \mathsf{H} \longrightarrow \mathsf{H}$$

 $(au, x) \longmapsto x(\cdot - au)$

is sc-smooth.

Corollary (Albers-S.)

The map

$$s: \mathbb{R} \times \mathsf{H}^1 \longrightarrow \mathsf{H}$$
$$(\tau, x) \longmapsto \dot{x} - X(\varphi(\tau, x))$$

is sc-smooth.

Applying the M-polyfold IFT

Recall:

Theorem (IFT for Banach bundles)

Assume that

- we have a Banach space bundle over a Banach manifold,
- f is a smooth section,
- f has the Fredholm property and
- f is transverse to the zero section.

Then the zero set of f is a smooth manifold of dimension equal to the Fredholm index of f.

Theorem (IFT for M-polyfold bundles)

Assume that

- we have a tame strong M-polyfold bundle admitting sc-smooth bump functions, our setting: the trivial sc-Hilbert space bundle ℝ × H¹ × H → ℝ × H¹
- f is a sc-smooth section, our setting: s : ℝ × H¹ → H
- f has the sc-Fredholm property and our case: some work!
- f is in good position our case: need transversality

Then the zero set of f is a smooth manifold of dimension equal to the Fredholm index of f.

Indeed, we could prove the following:

Theorem (Albers-S.)

- $s : \mathbb{R} \times H^1 \longrightarrow H$ is a sc-Fredholm section of index 1.
- ② If x_0 is a non-degenerate periodic orbit of X, then $ds(0, x_0) : \mathbb{R} \times H^1 \longrightarrow H$ is surjective.

This together with the M-polyfold IFT implies our main theorem:

Theorem (Albers-S.)

Assume that x_0 is a non-degenerate 1-periodic orbit of the vector field X. Then for every small enough $\tau \in \mathbb{R}$ there exists a (locally unique) solution $x_{\tau} \in C^{\infty}(S^1, \mathbb{R}^n)$ of the delay equation

$$\dot{x}(t) = X_t(x(t-\tau)).$$

The parametrization $\tau \mapsto x_{\tau}$ is smooth.